Show educations.com as: Mobile

Inorganic Chemistry (Research)

Cardiff University
Full time/part time
Master's degree
Scholarships available
On campus
Cardiff
Inquire for more information

Program description

Inorganic Chemistry (Research)

Research groups within the Inorganic Chemistry section formulate, and subsequently develop the applications of, coordination complexes containing main group and transition metals. The metals and types of ligand are numerous, and hence the applications are diverse. Research in Inorganic Chemistry therefore often lies at the interface with other scientific disciplines, including other chemistry sub-disciplines, physics, materials chemistry, and medical research.

The design of new ligands is central to the research carried out in all areas of Inorganic Chemistry. Ligands currently being developed include novel phosphines, particularly the important phosphine macrocycles and combined phosphine-carbene macrocycles, unique N-heterocyclic carbenes and related species, and the development of chiral ligands for use in asymmetric catalysis. This research is predominantly synthetic in nature involving multi-step organic and inorganic syntheses.

Groups are investigating new systems based upon novel ligands and/or functionalised coordination complexes for the development of chemosensors. Measurable responses are dictated by the nature of the probe and can therefore be monitored via modulated optical, luminescent, electrochemical or longitudinal proton relaxivity behaviour, depending on the targeted application.

Fundamental studies model and develop catalysts and catalytic reactions. The research involves experimental aspects, in which model catalyst systems are synthesised and studied spectroscopically; this work is often supported by computational studies in a synergistic combination of theory and experiment. The research involves close collaboration with colleagues in other research groups within the department.

Groups within the Inorganic research at Cardiff are interested in the application of metal complexes in biomedical imaging, ranging from radioimaging applications of complexes of radionuclides such as PET and SPECT, applications of paramagnetic species as MRI contrast agents to optical techniques and in particular fluorescence microscopy with transition metal complexes. Notable outputs from the groups include the developments of the 99mTc based heart imaging agent MyoviewTM and the development of the first rhenium bipyridyl cell imaging agents.

The detailed spectroscopic characterization of ligands and coordination complexes underpins all of the research undertaken within the Inorganic Chemistry group. In addition to the use of multinuclear NMR, IR and UV-vis. spectroscopies a range of more specialized advanced techniques are employed on a routine basis. For example, time-resolved luminescence measurements employing UV-vis-NIR detectors are employed to probe the excited states of a variety of d- and f-metal ion complexes, as well as novel organic chromophores. Such measurements are key to the exploitation of such complexes in applications such as sensors, confocal microscope cellular imaging and the design of new materials for photovoltaic devices.

Recent work has also focused on the design and synthesis of new prototypical complexes for use in magnetic resonance imaging (MRI). Field-cycling relaxometry is a key spectroscopic tool, providing 1H nuclear magnetic resonance dispersion plots, from which key parameters describing the physical properties of the complexes can be obtained. Recent work has investigated the relaxivity properties of highly paramagnetic gadolinium species, including the modulation of relaxivity through binding events with biomolecules such as DNA.

Work towards increasing the efficiency of photovoltaic devices is also being undertaken within the Inorganic Chemistry section. In particular, new light-harvesting molecules based upon transition metal complexes are being investigated, as well as novel hybrid materials based upon functionalized polymeric thiophene compounds. The work involves a comprehensive assessment of the electronic, photophysical and redox properties of the species in question and an assessment of the materials within prototype photovoltaic devices.

Available research specialisms include

  • Chemosensors
  • Catalysis
  • Imaging
  • Applied spectroscopy
  • Materials chemistry for photovoltaic devices.

Scholarships & funding

For more information about scholarships, please visit the university website.

Request info

Want to know more about this program, Inorganic Chemistry (Research)? Fill out the following form and include any questions you have. This information will be sent directly to the school, and a representative will respond to your enquiry.

About this institute

Cardiff University logo

Cardiff University

Founded in 1883, Cardiff University combines a prestigious heritage with impressive modern facilities, on one of the most beautiful campuses in the UK. As part of the Russell Group, our students benefit from our outstanding research quality and reputation, while...


Read more about this school

Contact info

Cardiff University

CF10 3AT Cardiff

 Show phone number
www.cardiff.ac.uk


Request information

Want to know more about Inorganic Chemistry (Research)? Fill out the following form and we'll pass your details on to a representative from the school, who will respond to your enquiry.

Reviews

Be the first to write a review!

Career test - find your perfect career

Take our free career test that will match you with programs and careers based on your interests and personality.

Take the test

You may also like...